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BY SELIM NAHAS

Given the growth and evolution of factory 
automation systems, most fabs now fi nd 
themselves with a vast amount of production 
data that is not well understood, prioritized, or 
integrated. Consequently, the data is largely 
unused for decision-making.

This lack of integration has led to two 
fundamental problems when it comes to 
improving product quality. First, visibility into 
quality remains a manual exercise. Second, the 
data cannot be used in real-time decision-
making to reduce defects.

To overcome these issues, Applied 
Materials is proposing a strategy that aligns 
key manufacturing principles that are typically 
not well-streamlined. Detection is at the 
heart of this strategy, closely tied to the 
methods of continuous improvement and risk 
management. In addition, an archiving strategy 

Applied Materials is developing a quality improvement strategy 
that combines quality data in a cohesive and automated manner 
and maps the results into a Failure Mode and E� ects Analysis 
(FMEA) system that provides users with recommended actions.

that allows for rapid and accurate auditability 
for compliance purposes is also proposed.

In the intensely competitive 
semiconductor industry, minimizing 
production costs is critical. Scrap is a 
signifi cant contributor to the cost of goods 
sold (COGS). Reducing COGS and achieving 
zero defects in device manufacturing are 
major priorities, so a new approach to factory 
data that uses end-to-end quality principles is 
essential. The ability to quickly and accurately 
identify non-conforming work-in-process 
(WIP) is also key to reducing it, and to 
enabling faster and more e� ective decision-
making (fi gure 1). 

However, if you ask an automation 
professional how much data is actually used 
for decision-making, most will contend it 
is somewhere between 5–10%. In many 

cases, it is well understood that there is value 
to be derived from the data set—provided 
a certain structure and access speed can 
be obtained—but its sheer volume poses 
a fundamental challenge. That is because 
these systems have numerous moving parts 
that must work cohesively, using high-
speed data in real time. Fundamentally, this 
means we must now look toward distributed 
architectures and new algorithms. 

A VOICE FOR EVERY SIGNAL
Over the last six months, an Applied 

Materials team has been developing the 
Applied SmartFactory® Automated Anomaly 
Handling platform. This expert system 
interprets existing wafer data in real time to 
enable a greater degree of anomaly detection.   
The intention is to give a voice to every signal, 
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in the form of a decision that ultimately leads 
to an action.  This structured approach will 
serve as the basis for enabling future factory 
systems to use artifi cial intelligence/machine 
learning (AI/ML) principles.

The Applied team’s work uses the fact 
that most computer-integrated manufacturing 
(CIM) solutions typically show thousands 
of signals in the form of error codes and 
messages. However, these are often ignored 
because (1) they have no landing point, (2) 
they are often ambiguous, and (3) their full 
implications were not considered in the 
fundamental design. 

A well-designed system considers the 
interdependencies of signals and measures 
within a manufacturing environment, allowing 
users to correlate signals e� ectively. By 
correlating such data, users can focus on the 
elements that truly matter to quality.

Because a fab may maintain somewhere 
between 30,000 and 150,000 statistical 
process control (SPC) charts and can easily 
have more than a million fault detection 
charts, any strategy that reduces the number 
of charts required while retaining or raising 
the expected quality would be valuable. This 
is more easily said than done, however, and 
requires advanced expert system principles.

CUSTOMERS DEMAND 
HIGHER QUALITY

The need for higher quality is driven by 
increasingly stringent customer requirements. 
The automotive sector, for example, is the 
fastest growing one with an estimated 
compound annual growth rate (CAGR) of 
9–11% over the next two years. The number 
of semiconductor devices used in vehicles 
has tripled over the past fi ve years, and about 
22% of automotive warranty returns are 
now electronic in nature. All this growth has 
brought about a quantum change in quality 
requirements, because semiconductors make 
possible the advanced features automakers 
are seeking for their customers. 

In addition, fabricating automotive devices 
often requires new materials and extensive 
documentation because these devices will be 
operating in harsh environmental conditions 
over many years (fi gure 2).

For example, approximately 80% of 
devices for automotive uses are manufactured 
on a 200mm line or below, and new materials 
such as silicon carbide (SiC) are increasingly 
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Figure 2. An e� ective archiving strategy is required to help audit future fi eld returns that can 
occur two years later in automotive and other applications.

Figure 1. The chart at the top shows the impact new product introduction has on COGS. 
Moving from 1.0ppm—where most manufacturers perform today—to a zero-defect capability 
will require extensive automation and process control capabilities. 
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Figure 3. This SPC chart shows the results of data analyzed at the site level that failed a 
statistical test of variation. The blue squares represent failed rate of change.

Figure 4. This sample shows 17 site measurements. The red color indicates the sites that are 
imposing excessive variation into the measurement statistic.

favored. However, SiC wafers are not 
available in 300mm sizes, and often not 
in 200mm, so these heightened quality 
challenges are falling upon fabs with older 
generations of equipment and systems. 

CORRELATING WAFER 
MEASUREMENTS WITH 
SENSOR TRACES

Defi ning a system that correlates wafer 
measurements against sensor trace data 
(e.g., virtual metrology) requires emphasizing 
the timing and structure of this relationship. 
Applied Materials is pursuing numerous 
activities to profi le these principles in the 
hope of applying predictive maintenance 
(PdM) principles and augmenting sampling 
strategies. 

The Applied team is developing an ap-
proach to structure, integrate, and interpret 
data coming from wafer measurements 
with the goal of achieving higher quality. 
This requires defi ning each measurement to 
align with its respective recipe. It also means 
systems will no longer look at individual 
process steps in a discrete fashion but rather 
will interpret multiple process steps as the 
singular interdependent relationship of vari-
ous manufacturing attributes. As a result, we 
will no longer decide based on a single chart, 
but instead evaluate all the process steps that 
led to the current measurement and their 
contribution(s) to variance.

This project emerged from the expertise 
Applied Materials has gained by building 
process and equipment FMEAs, where 
it is clear that the number of variables 
required for high-quality decision-making 
exceeds the capacity of human cognitive 
ability. In addition, certain analytic real-
time techniques can be applied to look for 
patterns in the data coming from FDC and 
SPC and map them to something humans 
can use as input to automate actions.

UNIFYING STATISTICAL 
PROCESS CONTROL AND 
FAULT DETECTION

First, we must defi ne a relationship to 
establish cause and e� ect. This must be 
closely followed by introducing variability-
reduction capabilities to raise the quality 
of the data set used for correlation.  The 
primary requirement is predicated on two 
fundamental principles: (1) the system must 

The data must be transformed to be truly 
useful, because while SPC and fault detection 
and classifi cation (FDC) systems o� er a 
reasonable way to detect deviations, they o� er 
little insight into the root cause of variation.  
Measured anomalies and pattern mapping will 
provide more e� ective insight into the source 
of failures.

SYMPTOMS WITHIN THE DATA
There are common fl aws in the ways 

SPC and FDC are typically run in a facility. 
For example, with an SPC chart comprising 
between 12 and 40 raw data sites, the 
pattern of variation by sight can be used 

allow the simultaneous visualization of SPC 
and FDC data; and (2) it must automatically 
evaluate them both in reference to each other 
for every possible process run.

For example, fi gure 3 shows the results 
of an SPC chart with data analyzed at the 
site level that failed a proprietary statistical 
test of variance.  The blue points represent 
failures at the site level within the data set 
from the traditional SPC measurements.  
Figure 4 shows variability by site on a set of 
wafer samples. The red color indicates sites 
that failed the variation test. These results are 
mapped against a physical coordinate system 
to look for meaning in the pattern.
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to interpret root cause. While this is not a 
new concept, it has not made its way into 
most quality systems that review SPC data. 
Guiding principles that would enhance this 
capability are typically found in separate yield 
management systems (YMS) and defect 
management systems (DMS), which attempt 
to assign meaning to a wafer defect pattern to 
identify its sources.

With fault detection, meanwhile, we 
typically set limits to monitor alarms and 
understand how a system runs under nominal 
conditions for a given recipe. But variation 
within the limits is meaningful to the strategy 
of correlating sight measurements with 
sensor data. While the ability to assign a 
diagnosis in real time can be achieved using 
an automated system, a human would be 
hard-pressed to identify and mitigate risk to 
wafers quickly enough.

It must be acknowledged that setting 
boundaries on the data used to interpret 
limits and actions is always challenging. 
For example, equipment interventions, 
such as changing part types and vendors 
for equipment components, can result in 
variations. Also, di� erent devices, having 
di� erent topographies, tend to lend variations 
of their own for the same recipe. The secret is 
to discern the appropriate period of time and 
subset of sensors to monitor to understand the 
actual capabilities of the process for a given 
product and recipe. This must become an 
automated exercise or it will not scale to meet 
the fab’s broader needs.  As stated earlier, it 
must be continuously validated against the 
SPC data using automation.

IP SENSITIVITIES AND 
OTHER ISSUES

Technology that can be used to resolve 
certain problems also must be sensitive to 
information sharing (IP) issues and internet 
protocol control. Fabs looking to apply 
machine learning and artifi cial intelligence 
automation capabilities across the enterprise 
will need to ensure that their vendor 
noncompete/nondisclosure agreements 
are not violated. This is necessary because a 
strategy combining inline SPC data with fault 
detection data inevitably must also consider 
incoming materials from competing vendors.

This has historically created numerous 
barriers to developing such systems. But 
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Figure 5. This recipe chart shows sensor trace data that an integrated system would 
continuously correlate to the SPC chart shown in fi gures 3 and 4.

to advance toward higher quality, we must 
accommodate privacy requirements while still 
providing relevant information to make the 
appropriate decisions on the fab fl oor. A use 
case for such a decision would be discerning 
whether measurement failure is a product of 
the current equipment set or the upstream 
equipment set.

It can be very di�  cult to triage between 
product changes, preventive maintenance, 
chemical changes, and chamber-matching 
alone. So, if we are to identify with a high 
degree of certainty when equipment is 
abnormally drifting or experiencing a 
progressive failure, we will need to understand 
all these facets.

One of the key challenges in a facility is 
information coming out of sequence. The 
sequence of manufacturing operations, versus 
measuring a wafer or a lot, has signifi cance for 
data interpretation. An added challenge is the 
high-mix/low-volume problem often seen in 
our industry. 

LOOKING TO NEW HORIZONS
Applied Materials is pursuing an initiative 

that combines SPC and FDC data in a cohesive 
and automated manner, then maps the results 
to an FMEA system to provide users with 
recommended actions. This  initiative is the 
fi rst step toward developing a future system 

that will enable AI in fabs. At present, the 
system can be considered an advanced expert 
system that addresses data structure and 
variability.

The path forward is becoming clearer and 
tests in manufacturing facilities are beginning 
to show promising results. Our next steps will 
be to gain more experience and eventually 
expand into other parts of the facility to include 
electrical tests.

Selim leads the Applied Automation Process 
Quality Group. For additional information, 
contact him at selim_nahas@amat.com
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